We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An important generalization of classical finite-state automata are multi-tape automata, which are used for recognizing relations of a particular type. The so-called regular relations (also refered to as ‘rational relations’) offer a natural way to formalize all kinds of translations and transformations, which makes multi-tape automata interesting for many practical applications and explains the general interest in this kind of device. A natural subclass are monoidal finite-state transducers, which can be defined as two-tape automata where the first tape reads strings. In this chapter we present the most important properties of monoidal multi-tape automata in general and monoidal finite-state transducers in particular. We show that the class of relations recognized by n-tape automata is closed under a number of useful relational operations like composition, Cartesian product, projection, inverse etc. We further present a procedure for deciding the functionality of classical finite-state transducers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.