This paper studies changes of standard errors (SE) of the normal-distribution-based maximum likelihood estimates (MLE) for confirmatory factor models as model parameters vary. Using logical analysis, simplified formulas and numerical verification, monotonic relationships between SEs and factor loadings as well as unique variances are found. Conditions under which monotonic relationships do not exist are also identified. Such functional relationships allow researchers to better understand the problem when significant factor loading estimates are expected but not obtained, and vice versa. What will affect the likelihood for Heywood cases (negative unique variance estimates) is also explicit through these relationships. Empirical findings in the literature are discussed using the obtained results.