We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter addresses issues arising in the time accurate simulation of unsteady flows. In order to enable accurate simulations of time dependent flows with moving shocks and contact discontinuities, there is a need for higher order accurate time discretization schemes that can preserve the TVD property. Additionally, time dependent calculations are needed for a number of important applications, such as flutter analysis or the analysis of the flow past a helicopter rotor, in which the stability limit of an explicit scheme forces the use of much smaller time steps than would be needed for an accurate simulation. This motivates the “dual time stepping” scheme, in which a multigrid explicit scheme can be used in an inner iteration to solve the equations of a fully implicit time stepping scheme. Such schemes are developed in this chapter.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.