We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A conjecture of Manin predicts the distribution of rational points on Fano varieties. We provide a framework for proofs of Manin’s conjecture for del Pezzo surfaces over imaginary quadratic fields, using universal torsors. Some of our tools are formulated over arbitrary number fields. As an application, we prove Manin’s conjecture over imaginary quadratic fields $K$ for the quartic del Pezzo surface $S$ of singularity type ${\boldsymbol{A}}_{3}$ with five lines given in ${\mathbb{P}}_{K}^{4}$ by the equations ${x}_{0}{x}_{1}-{x}_{2}{x}_{3}={x}_{0}{x}_{3}+{x}_{1}{x}_{3}+{x}_{2}{x}_{4}=0$.
We prove the modularity of minimally ramified ordinary residually reducible p-adic Galois representations of an imaginary quadratic field F under certain assumptions. We first exhibit conditions under which the residual representation is unique up to isomorphism. Then we prove the existence of deformations arising from cuspforms on GL2(AF) via the Galois representations constructed by Taylor et al. We establish a sufficient condition (in terms of the non-existence of certain field extensions which in many cases can be reduced to a condition on an L-value) for the universal deformation ring to be a discrete valuation ring and in that case we prove an R=T theorem. We also study reducible deformations and show that no minimal characteristic 0 reducible deformation exists.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.