Electron tomography has become an essential tool for three-dimensional (3D) characterization of nanomaterials. In recent years, advances have been made in specimen preparation and mounting, acquisition geometries, and reconstruction algorithms. All of these components work together to optimize the resolution and clarity of an electron tomogram. However, one important component of the data-processing has received less attention: the 2D tilt series alignment. This is challenging for a number of reasons, namely because the nature of the data sets and the need to be coherently aligned over the full range of angles. An inaccurate alignment may be difficult to identify, yet can significantly limit the final 3D resolution. In this work, we present an improved center-of-mass alignment model that allows us to overcome discrepancies from unwanted objects that enter the imaging area throughout the tilt series. In particular, we develop an approach to overcome changes in the total mass upon rotation of the imaging area. We apply our approach to accurately recover small Pt nanoparticles embedded in a zeolite that may otherwise go undetected both in the 2D microscopy images and the 3D reconstruction. In addition to this, we highlight the particular effectiveness of the compressed sensing methods with this data set.