We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
How and why do predators sometimes fuel disease outbreaks but other times thwart them? Answering this could help explain spatial and temporal variation in disease and could explain why attempts to control disease by manipulating predators sometimes fail. We give eight mechanisms by which predators can suppress/spread disease in prey populations, exploring each generally and reviewing evidence from the study system that has been the focus of much of our research. This system focuses on Daphnia dentifera, a dominant herbivore in lake food webs in the Midwestern United States. D. dentifera is prey to bluegill sunfish and phantom midge larvae, as well as host to a virulent fungal pathogen. We review evidence for bluegill sunfish as ‘healthy herds’ predators that reduce disease, and for midge larvae as ‘predator spreaders’ that fuel disease outbreaks. We find that both predators can impact disease via multiple mechanisms. Bluegill feed selectively on infected hosts and also depress disease in Daphnia by reducing the density of midge larvae which spread disease. They also increase the abundance of Ceriodaphnia, which reduce disease. Midge larvae increase disease in their hosts, in part by releasing spores into the water column where they can be consumed by additional hosts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.