The analytical performance of high-resolution scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) for accurate determination of the size, size distribution, qualitative elemental analysis of nanoparticles (NPs) was systematically investigated. It is demonstrated how powerful high-resolution SEM is by using both mono- and bi-modal distributions of SiO2 airborne NPs collected on appropriate substrates after their generation from colloidal suspension. The transmission mode of the SEM (TSEM) is systematically employed for NPs prepared on thin film substrates such as transmission electron microscopy grids. Measurements in the transmission mode were performed by using a “single-unit” TSEM transmission setup as manufactured and patented by Zeiss. This alternative to the “conventional” STEM detector consists of a special sample holder that is used in conjunction with the in-place Everhart–Thornley detector. In addition, the EDX capabilities for imaging NPs, highlighting the promising potential with respect to exploitation of the sensitivity of the new large area silicon drift detector energy dispersive X-ray spectrometers were also investigated. The work was carried out in the frame of a large prenormative VAMAS (Versailles Project on Advanced Materials and Standards) project, dedicated to finding appropriate methods and procedures for traceable characterization of NP size and size distribution.