Gas furnaces are the prevalent heating systems in Europe, but efforts to decarbonize the energy sector advocate for their replacement with heat pumps. However, this transition poses challenges for power grids due to increased electricity consumption. Estimating this consumption relies on the seasonal performance factor (SPF) of heat pumps, a metric that is complex to model and hard to measure accurately. We propose using an unpaired dataset of smart meter data at the building level to model the heat consumption and the SPF. We compare the distributions of the annual gas and heat pump electricity consumption by applying either the Jensen–Shannon Divergence or the Kolmogorov–Smirnov test. Through evaluation of a real-world dataset, we prove the ability of the methodology to predict the electricity consumption of future heat pumps replacing existing gas furnaces with a focus on single- and two-family buildings. Our results indicate anticipated SPFs ranging between 2.8 and 3.4, based on the Kolmogorov–Smirnov test. However, it is essential to note that the analysis reveals challenges associated with interpreting results when there are single-sided shifts in the input data, such as those induced by external factors like the European gas crisis in 2022. In summary, this extended version of a conference paper shows the viability of utilizing smart meter data to model heat consumption and seasonal performance factor for future retrofitted heat pumps.