We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Kenneth I. Kellermann, National Radio Astronomy Observatory, Charlottesville, Virginia,Ellen N. Bouton, National Radio Astronomy Observatory, Charlottesville, Virginia
One important area where radio astronomers confirmed theoretical predictions was in tests of General Relativity. Radio interferometer measurements made during the 1970s were able to confirm Einstein’s prediction of the gravitational bending of light to an accuracy better than 1 percent, or an order of magnitude better than the controversial classical optical tests made during the time of a solar eclipse. In 1965, MIT Professor Irwin Shapiro suggested and subsequently confirmed a new fourth test of General Relativity resulting from the excess delay of the reflected radar signal from a planet as the signal passes close to the Sun. Radio observations have also found Einstein’s “gravitational lensing” by which a massive cluster of galaxies can form multiple radio images of a background galaxy or quasar. Observations of small periodic deviations in the time of arrival of pulsar pulses at the Arecibo Observatory led Princeton University graduate student Russell Hulse and his supervisor Joe Taylor to the 1993 Nobel Prize in Physics for the first experimental evidence for the predicted existence of gravitational radiation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.