Recently, significant progress in the field of grain boundary segregation was achieved, for example, in better understanding and modeling the stabilization of nanocrystalline structures by grain boundary segregation, searching for more advanced approaches to theoretical calculation of segregation energies and development of the complexion approach. Nevertheless, with each progress, new important questions appear which need to be solved. Here, we focus on two basic questions appearing recently: How can be the experimental results on the grain boundary segregation compared reliably to their theoretical counterparts? Is the preferred segregation site of a solute in the grain boundary core substitutional or interstitial? We also show that the entropy of grain boundary segregation is a very important quantity which cannot be neglected in thermodynamic considerations as it plays a crucial role, for example, in prediction of thermodynamic characteristics of grain boundary segregation and in the preference of the segregation site at the boundary.