We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A very interesting class of stochastic processes was introduced by Alan Hawkes (1971). These processes, now called Hawkes processes, are meant to model self-exciting and mutually-exciting random phenomena that evolve in time. The self-exciting phenomena are modeled as univariate Hawkes processes, and the mutually-exciting phenomena are modeled as multivariate Hawkes processes. Hawkes processes belong to the family of marked point processes, and, of course, a univariate Hawkes process is just a special case of the multivariate one. In this chapter we define and study generalized multivariate Hawkes processes, as well as the related consistencies and structures. Generalized multivariate Hawkes processes are multivariate marked point processes that add an important feature to the family of (classical) multivariate Hawkes processes: they allow for explicit modeling of simultaneous occurrence of excitation events coming from different sources, i.e. caused by different coordinates of the multivariate process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.