We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gravity has an irresistible grip on our curiosity and is able to drive our imagination to completely different theoretical spaces. This very fact alone sets gravity aside from all other types of physical interactions we know. Indeed, gravity is the only physical interaction of which we have a conscious experience and this awareness is with us every second of our life. In this book we set out to try to address the question: '…what is gravity and how does gravity actually work?'. This book is meant as a guide in a journey that will take us from our basic understanding of gravity, the one that is deeply coded in our brains even at an instinctive level, to the more physically detailed and yet incorrect description provided by Newton’s theory of gravity. The journey will then lead us to the mathematically beautiful and physically profound description that Einstein has proposed with his 'general theory of relativity', and that is elegantly embodied in his field equations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.