The fractures of a soda-lime glass surface layer were investigated under irradiation by a high-power ion beam of nanosecond duration with different current densities. Two kinds of cracks (perpendicular and approximately parallel irradiated surfaces) have been identified. It is defined that cracks approximately parallel to the surface are localized at a depth of 10 ± 2 µm from the irradiated glass surface after one-time irradiation with a current density of 100 A/cm2. The formation of these cracks was detected within ~170 h after the end of irradiation when irradiated samples were under an air atmosphere. In a vacuum, the growth of these cracks was insignificant. It is shown that irradiation of heated glass or heating of glass started no later than 2–3 min after irradiation can suppress or substantially reduce surface fracture of glass. The possible mechanisms of glass fracture were discussed.