Planar field-emission cathode structures consisting of nanostructured carbon flakes have been investigated as an electron source for flat panel display application.
Layers of nanoflakes were grown on silicon and molybdenum substrates using a high- temperature pyrolitic plasma-assisted CVD method. The result is a vertically oriented nanocluster layer of 1-2 micrometer height chemically bonded with the substrates. Additional orientation of the flakes, occurring during the first activation of the cathodes, was observed.
Field emission properties of the emitters were studied in a vacuum chamber and in sealed flat-panel prototype devices with non-patterned low-voltage phosphor screens. Emitters with an area up to 1 square inch were tested under DC currents up to 100 microamps in diode mode. Anode bias up to 1.5 kV was applied. Current fluctuations of 1-2% were achieved using loading resistor.