Interlaminar delamination damage is a common and typical defect in the context of structural damage in carbon fiber-reinforced resin matrix composites. The technology to identify such damage is crucial for improving the safety and reliability of structures. In this paper, we fabricated carbon fiber-reinforced composite laminates with different degrees of delamination damage, conducted static load experiments on them and used femtosecond fiber Bragg grating sensors (fsFBG) to determine their structural state to investigate the effects of delamination damage on their performance. We constructed a model to identify damage based on the deep residual shrinkage network, and used experimental data to enable it to identify varying degrees of delamination damage to carbon fiber-reinforced composites with an accuracy of 97.98%.