We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dialysis patients may not have access to conventional renal replacement therapy (RRT) following disasters. We hypothesized that improvised renal replacement therapy (ImpRRT) would be comparable to continuous renal replacement therapy (CRRT) in a porcine acute kidney injury model.
Methods:
Following bilateral nephrectomies and 2 hours of caudal aortic occlusion, 12 pigs were randomized to 4 hours of ImpRRT or CRRT. In the ImpRRT group, blood was circulated through a dialysis filter using a rapid infuser to collect the ultrafiltrate. Improvised replacement fluid, made with stock solutions, was infused pre-pump. In the CRRT group, commercial replacement fluid was used. During RRT, animals received isotonic crystalloids and norepinephrine.
Results:
There were no differences in serum creatinine, calcium, magnesium, or phosphorus concentrations. While there was a difference between groups in serum potassium concentration over time (P < 0.001), significance was lost in pairwise comparison at specific time points. Replacement fluids or ultrafiltrate flows did not differ between groups. There were no differences in lactate concentration, isotonic crystalloid requirement, or norepinephrine doses. No difference was found in electrolyte concentrations between the commercial and improvised replacement solutions.
Conclusion:
The ImpRRT system achieved similar performance to CRRT and may represent a potential option for temporary RRT following disasters.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.