Observed-score equating using the marginal distributions of two tests is not necessarily the universally best approach it has been claimed to be. On the other hand, equating using the conditional distributions given the ability level of the examinee is theoretically ideal. Possible ways of dealing with the requirement of known ability are discussed, including such methods as conditional observed-score equating at point estimates or posterior expected conditional equating. The methods are generalized to the problem of observed-score equating with a multivariate ability structure underlying the scores.