We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electron mode is used for treatment of superficial tumours in linac-based radiotherapy.
Purpose
The aim of present study is simulation of 8, 12 and 14 MeV electrons from a Siemens Primus linac using MCNPX Monte Carlo (MC) code and verification of the results based on comparison of the results with the measured data.
Materials and methods
Electron mode for 8, 12 and 14 MeV electron energies of a Siemens Primus linac was simulated using MCNPX MC code. Percent depth dose (PDD) data for 10 × 10, 15 × 15 and 25 × 25 cm2 applicators obtained from MC simulations were compared with the corresponding measured data.
Results
Gamma index values were less than unity in most of points for all the above-mentioned energies and applicators. However, for 25 × 25 cm2 applicator in 8 MeV energy, 10 × 10 cm2 applicator and 15 × 15 cm2 applicator in 14 MeV energy, there were four data points with gamma indices higher than unity. However among these data points, there are a number of cases with relatively large value of gamma index, these cases are positioned on the bremsstrahlung tail of the PDD curve which is not normally used in treatment planning.
Conclusion
There was good agreement between the results of MC simulations developed in this study and the measured values. The obtained simulation programmes can be used in dosimetry of electron mode of Siemens Primus linac in the cases in which it is not easily feasible to perform experimental in-phantom measurements.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.