We propose a new methodology for ranking the reflectors used in traditional Hough-based indexing of electron backscatter diffraction (EBSD) patterns. Instead of kinematic X-ray or electron structure factors (Fhkl) currently utilized, we propose the integrated Kikuchi band intensity parameter (βhkl) based on integrated dynamical electron backscatter intensities. The proposed parameter is compared with the traditional kinematical intensity, $I_{hkl}^{{\rm kin}} $, as well as the average Hough transform peak intensity, $I_{hkl}^{{\rm HSP}} $ and used to index EBSD patterns for a number of different material systems of varying unit cell complexities including nickel, silicon, rutile, and forsterite. For elemental structures, βhkl closely follows the kinematical ranking. However, significant ranking differences arise for more complex unit cells, with the βhkl parameter showing a better correlation with the integrated Hough intensities. Finally, Hough-based indexing of a simulated forsterite data set showed an appreciable improvement in the median confidence index (0.15 to 0.35) when βhkl is used instead of $I_{hkl}^{{\rm kin}} $ for ranking the reflectors.