We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Since 2001, a Japanese national project has developed a helicopter emergency medical service (HEMS) system (“doctor-helicopter”) and a central Disaster Medical Assistance Team (DMAT) composed of mobile and trained medical teams for rapid deployment during the response phase of a disaster.
Problem
In Japan, the DMAT Research Group has focused on command and control of doctor-helicopters in future disasters. The objective of this study was to investigate the effectiveness of such planning, as well as the problems encountered in deploying the doctor-helicopter fleet with DMAT members following the March 11, 2011 Great East Japan Earthquake.
Methods
This study was undertaken to examine the effectiveness of aeromedical disaster relief activities following the Great East Japan Earthquake and to evaluate the assembly and operations of 15 doctor-helicopter teams dispatched for patient evacuation with medical support.
Results
Fifteen DMATs from across Japan were deployed from March 11th through March 13th to work out of two doctor-helicopter base hospitals. The dispatch center at each base hospital directed its own doctor-helicopter fleet under the command of DMAT headquarters to transport seriously injured or ill patients out of hospitals located in the disaster area. Disaster Medical Assistance Teams transported 149 patients using the doctor-helicopters during the first five days after the earthquake. The experiences and problems encountered point to the need for DMATs to maintain direct control over 1) communication between DMAT headquarters and dispatch centers; 2) information management concerning patient transportation; and 3) operation of the doctor-helicopter fleet during relief activities. As there is no rule of prioritization for doctor-helicopters to refuel ahead of other rotorcraft, many doctor-helicopters had to wait in line to refuel.
Conclusion
The “doctor-helicopter fleet” concept was vital to Japan's disaster medical assistance and rescue activities. The smooth and immediate dispatch of the doctor-helicopter fleet must occur under the direct control of the DMAT, independent from local government authority. Such a command and control system for dispatching the doctor-helicopter fleet is strongly recommended, and collaboration with local government authorities concerning refueling priority should be addressed.
MatsumotoH, MotomuraT, HaraY, MasudaY, MashikoK, YokotaH, KoidoY. Lessons Learned from the Aeromedical Disaster Relief Activities Following the Great East Japan Earthquake. Prehosp Disaster Med. 2013;28(2):1-4.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.