We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nonlinear aspects of wave propagation are investigated. Special attention is given to magnetic slabs and tubes, deriving the Benjamin-Ono equation for the slow mode in a slab and the Leibovich-Roberts equation for the slow mode in a tube. Soliton solutions are obtained and illustrated under various solar conditions. The role of Whitham’s equation is explored. Dissipative effects are also added, and shown to lead to the Benjamin-Ono-Burgers equation. Approximate solutions are given and illustrated for solar conditions. The roles of viscous and thermal damping of weakly nonlinear slow waves (sound waves) are also explored, and the effect of gravity is examined. Both standing waves and propagating waves are looked at. Finally, the nonlinear kink mode is presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.