The Spacewatch Project at the University of Arizona uses a 0.9-meter and a 1.8-meter telescope to search for new Near-Earth Objects (NEOs) and make astrometric followup measurements of known ones. Among the presently operational asteroid astrometry programs, Spacewatch is uniquely suited to support discoveries by the planned deep all-sky surveys. The Spacewatch 1.8-meter telescope is the largest in the world that is used exclusively for observations of asteroids and comets. Since 2003 January 1, Spacewatch has made ~2400 separate-night detections (discoveries plus followup) of NEOs with absolute magnitude H≤ 22, including 117 fresh discoveries of NEOs with H≤22 and ~900 separate-night detections of Potentially Hazardous Asteroids (PHAs). Objects have been recovered at V=23 and at elongations less than 60 degrees from the Sun. Spacewatch followup observations have contributed to the removal of 137 objects from JPL's impact risk website. Examples of notable recoveries by Spacewatch include the extension of orbital arcs from one month to multi-opposition orbits, and a successful targeted search for a large PHA (1990 SM) with 80 degrees of uncertainty. Spacewatch has been making as many observations of PHAs with H≤22 and V>21 as all other followup stations combined. Followup of NEOs while they are not near Earth provides better leverage on orbital elements and will be well suited to follow up some of the discoveries by the larger-scale, deeper sky surveys: both ground- and space-based. Spacewatch is collaborating with the Panoramic Survey Telescope and Rapid Response System (PS) of the University of Hawaii's Institute for Astronomy. Each lunation, Spacewatch sends its listings of point sources detected in survey images for PS's moving object detection team to test their software. Spacewatch is also prepared to follow up objects of special interest, fast motion, or less than three nights of observations by PS itself. Spacewatch's current equipment is only a few years old, but there is still room to improve limiting magnitude & time efficiency.