Dielectric elastomers (DEs) find applications in many areas, particularly in the field of soft robotics. When modeling and simulating DE-based actuators and sensors, a substantial portion of the literature assumes the selected DE material to behave in some perfectly hyperelastic manner, and the vast majority have assumed invariant permittivity. However, studies on simple planar DEs have revealed instabilities and hastened breakdowns when a variable permittivity is allowed. This is partly due to the intertwined electromechanical properties of DEs rooted on their labyrinthine polymeric microstructures. This work focuses on studying the effects of a varying (with stretch) permittivity on the out-of-plane deformation of a circular DE, using a model derived from principles of strain-induced polymer birefringence. In addition, we utilize the Edward–Vilgis model, which attempts to account for effects related to crosslinking, and length extension, slippage, and entanglement of polymer chains. Our approach reveals the presence of “stagnation” regions in the electromechanical behavior of the DE actuator material. These stagnation regions are characterized by both electrical and mechanical critical electrostrictive coefficient ratios. Mechanically, certain values of the electrostrictive coefficient ratio predict cases where deformation does not occur in response to a change in voltage. Electrically, certain cases are predicted where changes in capacitance cannot be measured in response to changes in deformation. Thus, some combined conditions of loading and material properties could limit the effectiveness of DE membranes in either actuation or sensing. Therefore, our results reveal mechanisms that could be useful to designers of actuators and sensors and unveil an opportunity for exploring new theoretical materials with potential novel applications. Furthermore, since there are known analogous formulations between electrical and optical properties, criticality principles studied in this article could be extended to optomechanical coupling.