The identification of the important relationship between shape and function of ventricular chambers represents a milestone of modern cardiology. Application of the law of Laplace for an ideal sphere furnishes intuitive insights on the progression of heart failure. A dilated heart, by virtue of its large size, must generate greater stress in the myocardial wall to achieve sufficient pressure so as to eject the required amount of blood. The mural hypertrophy represents a compensatory mechanism, guaranteeing a lower stress. When the ratio between the radius of the chamber and the thickness of its wall increases abnormally, the heart fails.