The aim of this note is to study octahedrality in vector-valued Lipschitz-free Banach spaces on a metric space, under topological hypotheses on it, by analysing the weak-star strong diameter 2 property in Lipschitz function spaces. Also, we show an example that proves that our results are optimal and that octahedrality in vector-valued Lipschitz-free Banach spaces actually relies on the underlying metric space as well as on the Banach one.