We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chapter demonstrates that selecting an object of study is a consequential part of doing discourse analysis. Selecting an object of study requires considering many planning and analytic issues that are often neglected in introductory books on discourse analysis. This chapter reviews many of these planning and analytic issues, including how to organize and present data. After reading the chapter, readers will know how to structure an analysis; understand what data excerpts are and how to introduce them in an analysis; be able to create and present an object of study as smaller data excerpts; and know how to sequence an analysis.
The purpose of this chapter is to set the stage for the book and for the upcoming chapters. We first overview classical information-theoretic problems and solutions. We then discuss emerging applications of information-theoretic methods in various data-science problems and, where applicable, refer the reader to related chapters in the book. Throughout this chapter, we highlight the perspectives, tools, and methods that play important roles in classic information-theoretic paradigms and in emerging areas of data science. Table 1.1 provides a summary of the different topics covered in this chapter and highlights the different chapters that can be read as a follow-up to these topics.
Dictionary learning has emerged as a powerful method for data-driven extraction of features from data. The initial focus was from an algorithmic perspective, but recently there has been increasing interest in the theoretical underpinnings. These rely on information-theoretic analytic tools and help us understand the fundamental limitations of dictionary-learning algorithms. We focus on theoretical aspects and summarize results on dictionary learning from vector- and tensor-valued data. Results are stated in terms of lower and upper bounds on sample complexity of dictionary learning, defined as the number of samples needed to identify or reconstruct the true dictionary underlying data from noiseless or noisy samples, respectively. Many analytic tools that help yield these results come from information theory, including restating the dictionary-learning problem as a channel-coding problem and connecting analysis of minimax risk in statistical estimation to Fano’s inequality. In addition to highlighting effects of parameters on the sample complexity of dictionary learning, we show the potential advantages of dictionary learning from tensor data and present unaddressed problems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.