Results of stabilization for the higher order of the Kadomtsev-Petviashvili equation are presented in this manuscript. Precisely, we prove with two different approaches that under the presence of a damping mechanism and an internal delay term (anti-damping) the solutions of the Kawahara–Kadomtsev–Petviashvili equation are locally and globally exponentially stable. The main novelty of this work is that we present the optimal constant, as well as the minimal time, that ensures that the energy associated with this system goes to zero exponentially.