We introduce the notion of the equivariant covering type of a space X on which a finite group G acts and study its properties. The equivariant covering type measures the size of G-equivariant good covers of X and is thus an extension of the covering type of a space, introduced by Karoubi and Weibel. We show that the equivariant covering type is a G-homotopy invariant and describe its relation with other G-invariants, like the equivariant LS-category, G-genus, and the multiplicative structures of equivariant cohomology theories. We also compute the G-covering type of regular G-graphs, give estimates for orientation-preserving actions on surfaces and for the projectivizations of complex representations of G and cohomology spheres. As an application, we derive estimates of sizes of minimal G-triangulations for various G-spaces.