We provide a scaling for compound Poisson distributions that leads (under certain conditions on the Fourier transform) to a weak convergence result as the parameter of the distribution tends to infinity. We show that the limiting probability measure belongs to the class of stable Cauchy laws with Fourier transform t ↦ exp(−c|t|− iat log|t|). We apply this convergence result to the standard discrete Luria–Delbrück distribution and derive an integral representation for the corresponding limiting density, as an alternative to that found in a closely related paper of Kepler and Oprea. Moreover, we verify local convergence and we derive an integral representation for the distribution function of the limiting continuous Luria–Delbrück distribution.