In vitro gas production kinetics of six different substrates, pectin (PEC), xylan (XYL), starch (STA), cellulose (CEL), commercial compound feed (FEED; 201 g crude protein per kg, 155 g crude fibre per kg, 334 g neutral-detergent fibre (NDF) per kg and 190 g acid-detergent fibre (ADF) per kg) and an NDF prepared from commercial compound feed (NDFFEED) were determined using the caecum contents of weaned rabbits (36 days of age) and of rabbits at slaughter age (78 days of age) as inoculums. The cumulated gas production over 96 h of incubation was modelled with Gompertz model, and the kinetic parameters compared. The total potential gas production (parameter ‘B’ of the Gompertz model) was not affected (P>0.05) by the inoculum source, except with STA, where rabbits at slaughter weight had significantly higher total potential fermentability (314 ml/g dry matter (DM)) than those at weaning age (189 ml/g DM). Intensities of fermentation (maximum fermentation rate; MFR) of PEC (32.2 ml/h) and XYL (24.4 ml/h) were significantly greater in rabbits at weaning, while that of STA (45 ml/h) was significantly lower than at slaughter age (23.0, 14.3 and 14.0 ml/h for PEC, XYL and STA, respectively). The MFRs of CEL and NDFFEED were very similar between inoculum sources. In the first 10 h of fermentation which correspond to the normal retention time of the substrates in the caecum, the highest amount of gas was produced from PEC, followed by FEED and XYL. These substrates had a time of maximum fermentation rate (TMFR) at both rabbit ages short enough (8.0 and 9.5 h for PEC, 9.5 and 6.6 h for FEED, 13.7 and 14.2 h for XYL at weaning and at slaughter age, respectively) to be almost completely fermented in vivo.