Let ${{\sigma }_{\mathbb{Z}}}\left( k \right)$ be the smallest $n$ such that there exists an identity $$\left( x_{1}^{2}\,+\,x_{2}^{2}\,+\,\cdot \cdot \cdot \,+\,x_{k}^{2} \right)\,\cdot \,\left( y_{1}^{2}\,+\,y_{2}^{2}\,+\,\cdot \cdot \cdot \,+\,y_{k}^{2} \right)\,=\,f_{1}^{2}\,+\,f_{2}^{2}\,+\,\cdot \cdot \cdot \,+\,f_{n}^{2},$$ with ${{f}_{1}},...,\,{{f}_{n}}$ being polynomials with integer coefficients in the variables ${{x}_{1}},...,\,{{x}_{k}}$ and ${{y}_{1}},...,\,{{y}_{k}}$. We prove that ${{\sigma }_{\mathbb{Z}}}\left( k \right)\,\ge \,\Omega \left( {{k}^{{6}/{5}\;}} \right)$.