We study the space of commuting elements in the central product Gm,p of m copies of the special unitary group SU(p), where p is a prime number. In particular, a computation for the number of path-connected components of these spaces is given and the geometry of the moduli space Rep(ℤn, Gm,p) of isomorphism classes of flat connections on principal Gm,p-bundles over the n-torus is completely described for all values of n, m and p.