Both within and between species, leaves of plants display wide ranges in structural features. These features
include: gross investments of carbon and nitrogen substrates (e.g. leaf mass per unit area); stomatal density,
distribution between adaxial and abaxial surfaces, and aperture; internal and external optical scattering structures;
defensive structures, such as trichomes and spines; and defensive compounds, including UV screens, antifeedants,
toxins, and silica abrasives. I offer a synthesis of selected publications, including some of my own. A unifying
theme is the adaptive value of expressing certain structural features, posed as metabolic costs and benefits, for (1)
competitive acquisition and use of abiotic resources (such as water, light and nitrogen) and (2) regulation of biotic
interactions, particularly fungal attack and herbivory. Both acclimatory responses in one plant and adaptations
over evolutionary time scales are covered where possible. The ubiquity of trade-offs in function is a recurrent
theme; this helps to explain diversity in solutions to the same environmental challenges but poses problems for
investigators to uncover numerous important trade-offs. I offer some suggestions for research, such as on the need
for models that integrate biotic and abiotic effects (these must be highly focused), and some speculations, such as
on the intensity of selection pressures for these structures.