Compared with nitrogen and argon, helium is lighter and can better reduce the beam loss caused by angular scattering during beam transmission. The molecular dissociation cross-section in helium is high and stable at low energies, which makes helium the prevalent stripping gas in low-energy accelerator mass spectrometry (AMS). To study the stripping behavior of 14C ions in helium at low energies, the charge state distributions of carbon ion beams with −1, +1, +2, +3, and +4 charge states were measured at energies of 70–220 keV with a compact 14C-AMS at Guangxi Normal University (GXNU). The experimental data were used to analyze the stripping characteristics of C-He in the energy range of 70–220 keV, and new charge state yields and exchange cross-sections in C-He were obtained at energies of 70–220 keV.