We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Depression is a highly prevalent and heterogeneous disorder. This study aims to determine whether depression with atypical features shows different heritability and different degree of overlap with polygenic risk for psychiatric and immuno-metabolic traits than other depression subgroups.
Methods
Data included 30 069 European ancestry individuals from the UK Biobank who met criteria for lifetime major depression. Participants reporting both weight gain and hypersomnia were classified as ↑WS depression (N = 1854) and the others as non-↑WS depression (N = 28 215). Cases with non-↑WS depression were further classified as ↓WS depression (i.e. weight loss and insomnia; N = 10 142). Polygenic risk scores (PRS) for 22 traits were generated using genome-wide summary statistics (Bonferroni corrected p = 2.1 × 10−4). Single-nucleotide polymorphism (SNP)-based heritability of depression subgroups was estimated.
Results
↑WS depression had a higher polygenic risk for BMI [OR = 1.20 (1.15–1.26), p = 2.37 × 10−14] and C-reactive protein [OR = 1.11 (1.06–1.17), p = 8.86 × 10−06] v. non-↑WS depression and ↓WS depression. Leptin PRS was close to the significance threshold (p = 2.99 × 10−04), but the effect disappeared when considering GWAS summary statistics of leptin adjusted for BMI. PRS for daily alcohol use was inversely associated with ↑WS depression [OR = 0.88 (0.83–0.93), p = 1.04 × 10−05] v. non-↑WS depression. SNP-based heritability was not significantly different between ↑WS depression and ↓WS depression (14.3% and 12.2%, respectively).
Conclusions
↑WS depression shows evidence of distinct genetic predisposition to immune-metabolic traits and alcohol consumption. These genetic signals suggest that biological targets including immune-cardio-metabolic pathways may be relevant to therapies in individuals with ↑WS depression.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.