Previous studies have shown that bovine lactoferrin (bLF) exerts antibacterial, immune-modulating and anti-inflammatory effects. The present study aimed to investigate the effect of enteral bLF supplementation on intestinal adaptation and barrier function in a rat model of short bowel syndrome (SBS). Male Sprague–Dawley rats aged 4 weeks were randomised into three groups (n 10 per group): Sham group (rats submitted to bowel transection and reanastomosis); SBS group (rats submitted to 80 % small-bowel resection); SBS-bLF group (rats submitted to 80 % small-bowel resection plus treatment with bLF (0·5 g/kg per d) by oral administration from day 2 to day 20). Despite similar food intake, both the SBS and SBS-bLF groups exhibited significantly lower body weight gain, but increased villus height and crypt depth and a higher intestinal epithelial cell proliferation index (P< 0·05) when compared with the Sham group. Compared with that in the SBS group, in the SBS-bLF group, bacterial translocation to regional organs was low and intestinal permeability was significantly reduced. The SBS-bLF group also had increased secretory IgA (sIgA) concentrations in ileal contents (29·9 (23·8–33·0) ng/ml), when compared with the other two groups having similar sIgA concentrations (17·5 (12·6–29·1) and 19·3 (11·5–27·0) ng/ml, respectively). The relative expression levels of two tight junction (TJ) proteins, occludin and claudin-4, in the SBS-bLF group were significantly higher than those in the SBS group (P< 0·05), but did not exhibit any significant differences when compared with those in the Sham group. In conclusion, enteral bLF supplementation up-regulates small-bowel sIgA concentrations and TJ protein expression and reduces intestinal permeability and could thus support intestinal barrier integrity and protect against bacterial infections in SBS.