This paper focuses on assessing the limitations in the direction-finding process of radio sources with directional antennas in an urbanized environment, demonstrating how signal source antenna parameters, such as beamwidth and maximum radiation direction affect bearing accuracy in non-line-of-sight conditions. These evaluations are based on simulation studies, which use measurement-tested signal processing procedures. These procedures are based on a multi-elliptical propagation model, the geometry of which is related to the environment by the power delay profile or spectrum. The probability density function of the angle of arrival for different parameters of the transmitting antenna is the simulation result. This characteristic allows assessing the effect of the signal source antenna parameters on bearing error. The obtained results are the basis for practical correction bearing error and these show the possibility of improving the efficiency of the radio source location in the urbanized environment.