A linear list is a collection of items that can be accessed sequentially. The cost of a request is the number of items that need to be examined before the desired item is located, i.e. the distance of the requested item from the beginning of the list. The transposition rule is one of the algorithms designed to reduce the search cost by organizing the list. In particular, upon a request for a given item, the item is transposed with the preceding one. We develop a new approach for analyzing the algorithm, based on a coupling to a certain constrained asymmetric exclusion process. This allows us to establish an asymptotic optimality of the rule for two families of request distributions.