Machine learning (ML) and artificial intelligence (AI) are quickly becoming commonplace in materials research. In addition to the standard workflow of fitting a model to a large set of data in order to make predictions, the materials community is finding novel and meaningful ways to integrate AI within their work. This has led to an acceleration not only of materials design and discovery, but also of other aspects of materials research as well, including faster computational models, the development of autonomous and intelligent “robot researchers,” and the automatic discovery of physical models. In this issue, we highlight a few of these applications and argue that AI/ML is delivering real-world, practical solutions to materials problems. It is also clear that we need AI/ML methods and models, “dialects” that are better adapted to materials research.