Stochastic monotonicity properties for various classes of queueing networks have been established in the literature mainly with the use of coupling constructions. Miyazawa and Taylor (1997) introduced a class of batch-arrival, batch-service and assemble-transfer queueing networks which can be thought of as generalized Jackson networks with batch movements. We study conditions for stochastic domination within this class of networks. The proofs are based on a certain characterization of the stochastic order for continuous-time Markov chains, written in terms of their associated intensity matrices.