The effect of soil moisture, temperature, and light intensity on the spray deposition of fenoxaprop and imazamethabenz applied to wild oat plants was examined by using fluorescent tracer dye. Based on either biomass or total leaf area, the apparent deposition of the two herbicides diminished in the following order: shading > low temperature ≥ drought ≥ “optimum” > high temperature. The enhanced phytotoxicity of both herbicides under shading could be associated with increased spray deposition; and reduced fenoxaprop phytotoxicity under high temperature stress could be related to reduced deposition. Changes in spray deposition were attributed mainly to differences in herbicide interception due to altered plant morphology. Reduced retention for both herbicides was exhibited only in the plants grown at high temperature. Under “optimum” conditions, fenoxaprop phytotoxicity was directly associated with leaf orientation and thus with the proportion of projected leaf area at the time of herbicide spraying. Given similar application conditions, spray deposition of fenoxaprop and imazamethabenz on wild oat could be estimated by determining the ratio of the projected leaf area, as measured by an image analyzer, to the total leaf area.