We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Innovative large language model (LLM)-powered chatbots, which are extremely popular nowadays, represent potential sources of information on resuscitation for the general public. For instance, the chatbot-generated advice could be used for purposes of community resuscitation education or for just-in-time informational support of untrained lay rescuers in a real-life emergency.
Study Objective:
This study focused on assessing performance of two prominent LLM-based chatbots, particularly in terms of quality of the chatbot-generated advice on how to give help to a non-breathing victim.
Methods:
In May 2023, the new Bing (Microsoft Corporation, USA) and Bard (Google LLC, USA) chatbots were inquired (n = 20 each): “What to do if someone is not breathing?” Content of the chatbots’ responses was evaluated for compliance with the 2021 Resuscitation Council United Kingdom guidelines using a pre-developed checklist.
Results:
Both chatbots provided context-dependent textual responses to the query. However, coverage of the guideline-consistent instructions on help to a non-breathing victim within the responses was poor: mean percentage of the responses completely satisfying the checklist criteria was 9.5% for Bing and 11.4% for Bard (P >.05). Essential elements of the bystander action, including early start and uninterrupted performance of chest compressions with adequate depth, rate, and chest recoil, as well as request for and use of an automated external defibrillator (AED), were missing as a rule. Moreover, 55.0% of Bard’s responses contained plausible sounding, but nonsensical guidance, called artificial hallucinations, that create risk for inadequate care and harm to a victim.
Conclusion:
The LLM-powered chatbots’ advice on help to a non-breathing victim omits essential details of resuscitation technique and occasionally contains deceptive, potentially harmful directives. Further research and regulatory measures are required to mitigate risks related to the chatbot-generated misinformation of public on resuscitation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.