We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To design, construct and evaluate an anthropomorphic head and neck phantom for the dosimetric evaluation of 3D-conformal radiotherapy (3D-CRT) dose planning and delivery, for protocols developed by the Radiation Therapy Oncology Group (RTOG).
Materials and methods
An anthropomorphic head and neck phantom was designed and fabricated using Perspex material with delineated planning target volumes (PTVs) and organs at risk (OARs) regions. The phantom was imaged, planned and irradiated conformally by a 3D-CRT plan. Dosimetry within the phantom was assessed using thermoluminescent dosimeters (TLDs). The reproducibility of phantoms and TLD readings were checked by three repeated identical irradiations. Subsequent three clinical 3D-CRT plans for nasopharyngeal patients have been verified using the phantom. Measured doses from each dosimeter were compared with those acquired from the treatment planning system (TPS).
Results
Phantom's measured doses were reproducible with <3·5% standard deviation between the three TLDs’ repeated measurements. Verification of three head and neck 3D-CRT patients’ plans was implemented, and good agreement between measured values and those predicted by TPS was found. The percentage dose difference for TLD readings matched those corresponding to the calculated dose to within 4%.
Conclusion
The good agreement between predicted and measured dose shows that the phantom is a useful and efficient tool for 3D-CRT technique dosimetric verification.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.