The control of cutoffs is of great interest in designs of circular waveguides. In this paper, this topic is investigated for pure transverse-electric (TE) and transverse-magnetic (TM) modes by taking advantage of anisotropic reactance lining loadings. It is found that the cutoffs of TE and TM modes are determined by the reactance in the azimuthal and axial directions, respectively. When the reactance values are positive, the cutoff frequencies are lower than those of a normal conducting waveguide with the same cross-section. However, in contrast to the claim made in the previous literature that the negative reactance values caused the same reducing effect on the cutoffs as the positive values did, the cutoffs are found to be increased by the negative reactances. The theoretical results are validated by the simulations using commercial software, where a delicate model with an approximate curved anisotropic impedance boundary is proposed for the first time. By lowering the TE cutoffs and raising the TM ones, some intriguing applications, such as single-mode bandwidth extension and degenerate mode avoidance, are predicted, which would pave a way for designs of novel waveguide devices.