Thispaper addresses the problem of carrying an unknown nonuniform payload by multiple quadrotor agents. The load is modeled as a rigid body with unknown weight and position of Center of Gravity (CG) for the agents, and is included in their dynamic equations of motion. The agents and the load are assumed to be connected to each other by taut ropes. The Udwadia–Kalaba equation is used to calculate the constraint forces on the ropes acting on each quadrotor. Inner-loop and outer-loop controllers for quadrotors position and attitude control are presented. For the outer loop, an estimation algorithm based on the invariance and immersion adaptive control is utilized to estimate the unknown physical parameters of the payload including mass and CG position without using multi-axes force/torque sensors. The inner-loop controller employs an adaptive controller. Simulation results, for two and four agents carrying a nonuniform rod and cubic payload, show the effectiveness of the proposed algorithm. A case study is also performed to investigate the effect of quadrotors positioning on flight endurance of the cooperative aerial team carrying a nonuniform payload.