A positive relationship between the number of locations where a species occurs and the average density of individuals across those locations has been found in a wide variety of taxa and has been described as one of the most general and widespread relationships in macro-ecology. However, exceptions to this general rule have been found and this study tested whether abundance–occupancy relationships exist within the cetacean community of the west coast of Scotland. Data were collected in 2003–2006 and occupancy rates were calculated and compared to two density indices (relative density of groups per km2 surveyed and relative density of individuals per km2 surveyed) for four cetacean species (harbour porpoise, bottlenose dolphin, common dolphin and minke whale). Significant positive intraspecific abundance–occupancy relationships were found for both relative density of groups per km2 and relative density of individuals per km2 for two out of the four cetacean species tested (harbour porpoise and minke whale). When the relationships between the different species were compared, all four were found to conform to the same interspecific relationship when relative density of groups was used as the density index. However, some species were found to conform to different relationships when relative density of individuals was used as the density index, potentially due to differences in social structure between cetacean species. These relationships mean that when cetaceans are at a higher density within an area, they also occupy a greater number of locations and vice versa. The existence of positive abundance–occupancy relationships in cetaceans has a number of potential implications for their conservation and management. In particular, it means that when a potential impact is likely to positively or negatively affect the size of the range of a species or population, such as noise pollution or climate change, it is likely to also affect the species' or population's abundance in the same direction. It also has implications for the design and extent of protected areas, such as marine protected areas; as such relationships could be used to determine the area required to maintain a viable population size.