Nonlinear filtering is investigated in a system where both the signal system and the observation system are under non-Gaussian Lévy fluctuations. Firstly, the Zakai equation is derived, and it is further used to derive the Kushner-Stratonovich equation. Secondly, by a filtered martingale problem, uniqueness for strong solutions of the Kushner-Stratonovich equation and the Zakai equation is proved. Thirdly, under some extra regularity conditions, the Zakai equation for the unnormalized density is also derived in the case of α-stable Lévy noise.