We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathfrak {g}$ be a complex semisimple Lie algebra with associated Yangian $Y_{\hbar }\mathfrak {g}$. In the mid-1990s, Khoroshkin and Tolstoy formulated a conjecture which asserts that the algebra $\mathrm {D}Y_{\hbar }\mathfrak {g}$ obtained by doubling the generators of $Y_{\hbar }\mathfrak {g}$, called the Yangian double, provides a realization of the quantum double of the Yangian. We provide a uniform proof of this conjecture over $\mathbb {C}[\kern-1.2pt\![{\hbar }]\!\kern-1.2pt]$ which is compatible with the theory of quantized enveloping algebras. As a by-product, we identify the universal R-matrix of the Yangian with the canonical element defined by the pairing between the Yangian and its restricted dual.
Let $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{N}(\Bbbk )$, where $\Bbbk$ is an algebraically closed field of characteristic $p>0$, and $N\in \mathbb{Z}_{{\geqslant}1}$. Let $\unicode[STIX]{x1D712}\in \mathfrak{g}^{\ast }$ and denote by $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ the corresponding reduced enveloping algebra. The Kac–Weisfeiler conjecture, which was proved by Premet, asserts that any finite-dimensional $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$-module has dimension divisible by $p^{d_{\unicode[STIX]{x1D712}}}$, where $d_{\unicode[STIX]{x1D712}}$ is half the dimension of the coadjoint orbit of $\unicode[STIX]{x1D712}$. Our main theorem gives a classification of $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$-modules of dimension $p^{d_{\unicode[STIX]{x1D712}}}$. As a consequence, we deduce that they are all parabolically induced from a one-dimensional module for $U_{0}(\mathfrak{h})$ for a certain Levi subalgebra $\mathfrak{h}$ of $\mathfrak{g}$; we view this as a modular analogue of Mœglin’s theorem on completely primitive ideals in $U(\mathfrak{g}\mathfrak{l}_{N}(\mathbb{C}))$. To obtain these results, we reduce to the case where $\unicode[STIX]{x1D712}$ is nilpotent, and then classify the one-dimensional modules for the corresponding restricted $W$-algebra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.