We report a combined experimental and theoretical study of uranyl complexes that form on the interlayer siloxane surfaces of montmorillonite. We also consider the effect of isomorphic substitution on surface complexation since our montmorillonite sample contains charge sites in both the octahedral and tetrahedral sheets. Results are given for the two-layer hydrate with a layer spacing of 14.58 Å. Polarized-dependent X-ray absorption fine structure spectra are nearly invariant with the incident angle, indicating that the uranyl ions are oriented neither perpendicular nor parallel to the basal plane of montmorillonite. The equilibrated geometry from Monte Carlo simulations suggests that uranyl ions form outer-sphere surface complexes with the [O=U=O]2+ axis tilted at an angle of ~45° to the surface normal.