We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Christophe Boesch, Max-Planck-Institut für Evolutionäre Anthropologie, Germany,Roman Wittig, Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Edited in association with
Catherine Crockford, Max-Planck-Institut für Evolutionäre Anthropologie, Germany,Linda Vigilant, Max-Planck-Institut für Evolutionäre Anthropologie, Germany,Tobias Deschner, Max-Planck-Institut für Evolutionäre Anthropologie, Germany,Fabian Leendertz
The chimpanzees of the Taï Forest, Côte d’Ivoire, crack highly nutritious Coula edulis nuts using anvils and hammers. While using tools to access encased food items provides obvious benefits, the energetic gain of tool-assisted foraging can be further increased by optimal selection of tools. Previous studies of animal tool selection often relied on implicit assumptions or theoretical arguments about how tool features would influence foraging efficiency, and comprehensive measures of actual efficiency are still missing. We used field observations of nut-cracking efficiency and previously published estimates of energetic costs to investigate the rate of net energy intake as a function of hammer weight and hammer material. While stones allowed for a generally more efficient performance, nut-cracking efficiency depended on an interaction of hammer weight and material. Relative performance of stones and wood varied according to the ripeness of the nuts. Chimpanzees’ tool selection tends to optimize nut-cracking in many respects. Nonetheless, we also observed a few mismatches between efficiency and selection, some of which may be explained on cognitive, motivational or cultural grounds.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.